

# **Progressive Parameterizations** Ligang Liu, Chunyang Ye, **Ruiqi Ni**, Xiao-Ming Fu University of Science and Technology of China

#### **Parameterizations**





Applications

Texture mapping, remeshing, inter-surface mapping, and shape analysis

#### **Two Basic Requirements**



Low distortion



#### **Two Basic Requirements**



#### • Foldover-free





#### **Existing Work** Geometric Standpoint



- Local/global methods [Liu et al. 2008; Sorkine and Alex 2007]
- Bounded distortion methods [Aigerman et al. 2014; Kovalsky et al. 2015; Lipman 2012]
- Representation based methods [Chien et al. 2016b; Fu and Liu 2016; Sheffer et al. 2005]

# They cannot guarantee foldover-free!

#### **Tutte's Embedding Method**







Convex boundary Bijection guarantee

High distortion

High

Low

#### **Tutte's Embedding Method**









#### Convex boundary Bijection guarantee

High distortion

#### **Maintenance-based Methods**

GENERATIONS / VANCOUVER SIGGRAPH2018

• Not violate the foldover-free constraints.





#### **Distortion Measures**

• Symmetric Dirichlet metric: [Smith and Schaefer 2015]  $D(J_i) = \frac{1}{4} \left( ||J_i||_F^2 + ||J_i^{-1}||_F^2 \right)$  $= \frac{1}{4} \left( \sigma_i^2 + \sigma_i^{-2} + \tau_i^2 + \tau_i^{-2} \right)$  $\sigma_i, \tau_i: \text{ singular values of } J_i$  $Opt \text{ value } = 1 \text{ when } \sigma_i = \tau_i = 1$ 



GENERATIONS / 12-16 AUGUST SIGGRAPH2018

# Challenge

Highly non-convex and non-linear

• Extremely large distortion on initializations







#### log(energy)



#### **Existing Work** Optimization Standpoint



- Quasi-Newton method [Smith and Schaefer 2015]
- Preconditioning methods [Claici et al. 2017; Kovalsky et al. 2016]
- Reweighting descent method [Rabinovich et al. 2017]
- Composite majorization method [Shtengel et al. 2017]

# Only thinking from the view of solver!

GENERATIONS / 12-16 AUGUST SIGGRAPH2018



## **Our Approach**

# **Progressive Parameterizations**

## **Reference-guided Distortion Metric**





#### **Distortion Metric:** $D(f_i^r, f_i^p) = D(J_i)$

Input Mesh: **Ideal Reference** 

Parameterized mesh *M*<sup>*p*</sup>

# **Key Observation**

GENERATIONS / YAACOUVER SIGGRAPH2018



If all  $D(f_i^r, f_i^p) \le K, \forall i$ , only a few iterations in the optimization of  $E(M^r, M^p)$  are necessary.



#### **Change The Reference**



 $\phi_i(\boldsymbol{x}) = J_i \boldsymbol{x} + \boldsymbol{b}_i$ Goal: find a triangle between  $f_i$  and  $f_i^p$  as the reference  $f_i^r$  $\in M^p$  that satisfies  $D(f_i^r, f_i^p) \leq K$ .  $J_i(t)$  $\in M$  $f_i^r \in M^r$  $D(f_i^r, f_i^p) \le K$ 

#### **Choose The Reference**

• Exponential function [Alexa 2002; Grassia 1998; Rossignac and Vinacua 2011]:  $J_i(t) = U_i \operatorname{diag}(\sigma_i^t, \tau_i^t) V_i^T$ where  $J_i = U_i \operatorname{diag}(\sigma_i, \tau_i) V_i^T$ 



17



#### **Construction of new reference**





© 2018 SIGGRAPH. All Rights Reserved

# **Hybrid Solver**

GENERATIONS / 12-16 AUGUST SIGGRAPH2018

- SLIM [Rabinovich et al. 2017]
  - -Pros: effectively penalize the maximum distortion
  - -Cons: a poor convergence rate
- CM [Shtengel et al. 2017]
  - -Pros: converge quickly
  - -Cons: cannot reduce large distortion quickly
- Hybrid
  - -First perform SLIM solver
  - -Then use the CM solver

### **The Former Dragon Example**

GENERATIONS / VANCOUVER SIGGRAPH2018

#### log(energy)





# **Experiments**





#### GENERATIONS / YANCOUVER SIGGRAPH2018







#### $\mathcal{D}_1$ : **10273** well cut meshes

#### $\mathcal{D}_2$ : **6189** moderately bad cut meshes

### $\mathcal{D}_3$ : **4250** extremely challenging examples

















#### Distributions of iteration number



## Conclusions



 Progressive parameterizations: a novel and simple method to generate low isometric distortion parameterizations with no foldovers.

- ✓Thinks from the view of reference triangle.
- ✓ Exhibits strong practical reliability and high efficiency.
- ✓ Demonstrates the practical robustness on a large data set containing 20712 models

# Limitations

• Cannot fit constraint condition well.

• No theoretical guarantee to reduce  $E(M, M^p)$  monotonously.





# Thank you!



http://staff.ustc.edu.cn/~fuxm/projects/ProgressivePara/