Digital Geometry Processing
Introduction
This course provides an introduction to digital geometry processing, a subfield of computer graphics. This course will cover basic mathematical foundations for studying 3D surfaces from a discrete differential geometric standpoint and present the full geometry processing pipeline, including mesh representation, mesh smoothing, parameterization, remeshing, decimation and surface deformation.
Slides
0. Introduction
1. Representation
2. Discrete_Differential_Geometry
3. Smoothing
4. Parameterizations
5. Deformation
6. Coordinates
7. Mappings
8. Surface Mappings
9. PolyCube
10. Atlas
11. Spherical Parameterizations
12. Morphing
13. Directional Fields
14. Delaunay Triangulations
15. Voronoi Diagrams
14. Remeshing
15. Geometric optimization by Jian-Ping Su
Coding
1. Basic training
Implementation: Shortest path (Dijkstra’s algorithm) and minimal spanning tree on the triangular mesh
Reference: Spanning Tree Seams for Reducing Parameterization Distortion of Triangulated Surfaces
Deadline: 24:00 2019/3/3
2. Mesh Smoothing
Implementation: Bilateral mesh denoising
Deadline: 24:00 2019/3/10
3. Mesh Parameterization 1
Implementation: Tutte’s embedding algorithm
Deadline: 24:00 2019/3/17
4. Mesh Parameterization 2
Implementation: Least Squares Conformal Maps for Automatic Texture Atlas Generation
Deadline: 24:00 2019/3/24
5. Mesh Deformation 1
Implementation: As-Rigid-As-Possible Surface Modeling
Deadline: 24:00 2019/4/7
6. Mesh Deformation 2
Implementation: Free-Form Deformation of Solid Geometric Models
Deadline: 24:00 2019/4/21
7. Mesh Simplification
Implementation: Surface Simplification Using Quadric Error Metrics
Deadline: 24:00 2019/5/5
8. Mesh Interpolation
Implementation: As-Rigid-As-Possible Shape Interpolation
Deadline: 24:00 2019/5/19
9. Remeshing
Implementation: A Remeshing Approach to Multiresolution Modeling
Deadline: 24:00 2019/6/2
10. Optimal Delaunay triangulation
Implementation: Optimal Delaunay triangulation
Deadline: 24:00 2019/6/16